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OPTIMAL LOT-SIZE DETERMINATION FOR A TWO WARE-HOUSE 
PROBLEM WITH DETERIORATION AND SHORTAGES USING NPV 
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Abstract—In this paper, we develop a inventory model for deteriorating items with two warehouses (assuming deterioration 

rates in the two-warehouses to differ) by minimizing the net present value (NPV) of the total cost. We allow for shortages and 

complete backlogging and prove here that the optimal replenishment policy not only exists but also is conditionally unique. Fur-

ther, the result reveals that the reorder interval based on the average total cost, if it exists, must be longer than that derived using 

NPV. Finally, using a numerical example we illustrate the model and conclude the article with suggestions for possible future re-

search. 

 
Index Terms— Deterioration; Discounted cash flow; NPV; Shortages; Two-warehouse;  
 

——————————      —————————— 

1 INTRODUCTION                                  

In classical EOQ model, a single owned warehouse (OW) 

with unlimited capacity is usually assumed. But situations 

like temporary price discounts or bulk purchases or sea-

sonal product’s availability etc. make retailers buy ware-

houses or rebuild a new warehouse. The manager always 

finds it economically beneficial to maintain a rented 

warehouse (RW) in addition to the owned one. This will 

also make the system replenish more goods than can be 

stored in own warehouse. Hence inventory models should 

be extended to the situation with multiple warehouses. 

       

Again, the effect of deterioration is very important in 

many inventory systems. Deterioration is defined as decay 

or damage such that the item cannot be used for its origi-

nal purpose. Most of the physical goods undergo decay or 

deterioration over time.  Commodities such as fruits, vege 

tables, food stuffs, etc. suffer from depletion by direct spoi- 

lage while kept in store. 

Highly volatile liquids such as gasoline, alcohol, turpentine 

etc. undergo physical depletion with time through the pro-

cess of evaporation. Blood, electronic goods, radioactive 

substances, photographic films, food grains etc. deterio-

rate through a gradual loss of potential or utility with 

time. Thus, decay or deterioration of physical goods in 

stock is a very realistic feature. 

 

In recent years, various researchers have discussed a two-

warehouse inventory system. In formulation of the basic 

economic order quantity (EOQ) model, the demand rate of 

the item was assumed to be constant. Ghare et al. (1963) 

were the first researchers to consider the effect of dete-

rioration on inventory items. They derived on econom-

ic order quantity (EOQ) model where inventory items 

decay exponentially with time. A two-warehouse inven-

tory system was first proposed by Hartely(1976). There it 

was assumed that the holding cost in RW is greater than 

that in OW. Hence items in RW were first transferred to 

OW to meet the demand until the stock level in RW drops 

to zero and then items in OW are released. Goswami et al. 

(1992) further developed the model with or without 

shortages by assuming that the demand varies over time 

with linearly increasing trend and that the transportation 
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cost from RW to OW depends on the quantity being trans-

ported.  Pakkala et al. (1992) extended the two-

warehouse inventory model for deteriorating items with 

finite replenishment rate and shortages. 

The ideas of time-varying demand for deteriorating items 

with two storage facilities were also considered by 

Benkherouf (1997) and Bhunia et al. (1998). Goyal et al. 

(2001) presented a review of deteriorating inventory lit-

erature of the early 1990s. Murdeshwar et al. (1985) ex-

tended this model to the case of finite replenishment rate. 

Dave (1988) further discussed the cases of bulk release 

pattern for both finite and infinite replenishment rates. 

He rectified the errors in Murdeshwar et al. [1985] and 

gave a complete solution for the model given by Sharma 

(1983).  Pakkala et al. (1992) extended the two-

warehouse inventory model for deteriorating items with 

finite replenishment rate and shortages, taking time as 

discrete and continuous variable, respectively. In these 

models mentioned above, the demand rate was assumed 

to be constant. Subsequently, the ideas of time-varying 

demand and stock-dependent demand were considered by  

some authors, such as Benkherouf (1997), Goswami et al. 

(1998), Bhunia et al. (1998), Kar et al. (2001) and others. 

Yang (2004) proposed an alternative model for determin-

ing the optimal replenishment cycle for the two-

warehouse inventory problem under inflation, in which 

the inventory deteriorates at a constant rate over times 

and shortages were allowed . By assuming that the inven-

tory system will operate for a long time, he determined 

the optimal values of the decision variables by minimizing 

the average total cost.  

Zhou (2003) presented a multi-warehouse inventory 

model for non-perishable items with time-varying de-

mand and partial backlogging. Abad (1996, 2001) dis-

cussed a pricing and lot-sizing problem for a product with 

a variable rate of deterioration, allowing shortages and 

partial backlogging. Since the deterioration depends on 

preserving facilities and environmental conditions availa-

ble in a warehouse, different warehouses may have differ-

ent deterioration rates. As deterioration phenomenon is 

taken into account, a unit of inventory stored incurs hold-

ing cost and deterioration cost. However, we can deter-

mine the decision variables by minimizing the discounted 

value of all future costs (i.e. NPV of total cost). Hadley 

(1964) compared the optimal order quantities deter-

mined by minimizing these two different objective func-

tions. When the discount rate is excessive, he obtained the 

optimal reorder intervals with significant differences for 

these two models.  Rachamadugu (1988) developed error 

bounds for EOQ model by minimizing net present value 

approximately. Sun et al. (2002) investigated the general 

multiproduct, production and inventory model using the 

NPV of the total cost as the objective function stating that 

the reorder interval based on the average total cost could 

be much longer than that derived using NPV. 

In this paper, we develop a deterministic inventory model 

for deteriorating items with two-warehouses. We allow for 

shortages and complete backlogging, and assume that the 

inventory costs including holding cost and deterioration 

cost in RW is higher than that in OW. The firm stores 

goods in OW before RW, but clears the stocks in RW be-

fore OW. However, we minimize the NPV of the total cost. 

For generality, the deterioration rate in RW is different 

from one in OW. Due to consideration towards the effect of 

the discount rate, which relates to the purchasing power 

of money, purchasing cost must be included. We compute 

the purchase cost instead of the deterioration cost and 

obtain the condition which gives the unique solution and 

develop the criterion to find the optimal replenishment 

policy. We then compare the decision using the NPV with 

one using the average total cost. The result reveals that 

the reorder interval based on the average total cost, if it 

exists, must be longer than that derived using NPV.  

 
 

2 NOTATION AND ASSUMPTIONS:  
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2.1 Assumptions 
In order to develop the mathematical model of the two 

warehouse inventory replenishment policy, the assump-

tions adopted in this paper are as below: 

 
1. Lead time is zero. 

2. Replenishment rate is infinite. 

3. Shortages are allowed and completely backlogged  

4. The time horizon of the inventory system is infinite. 

5. The own warehouse (OW) has a fixed capacity of W 

units and  the rented warehouse (RW) has unlimited 

capacity. 

6. The goods of OW are consumed only after consuming 

the goods kept in RW, i.e.  sr ttT += . 

7. The unit inventory costs (including holding cost and 

deterioration cost) per unit time in RW are higher 

than those in OW; i.e. CCCC hohr αβ +>+  

 
2.2 Notation 

 
In addition, the following assumptions are imposed: 

D            demand rate per unit time 

A            replenishment cost per order 

C            purchasing cost per unit 

r             discount rate 

hoC       holding cost per unit per unit time in OW 

 

hrC       holding cost per unit per unit time in RW 

 

         backorder cost per unit per unit time 

a            deterioration rate of the stored commodity 

α          deterioration rate in OW, where 10 <≤ α  

β          deterioration  rate in RW, where 10 <≤ β  

W        capacity of the own warehouse 

Q        ordering quantity per cycle 

B        maximum inventory level per cycle 

rt         length of period during which the inventory level   

              reaches zero in RW 

ot         length of period during which the inventory level  

              reaches zero in OW 

st         length of period during which shortages are  

              allowed 

T        length of the inventory cycle 

     )(tI r    level of positive inventory in RW at time t 

     )(tI o    level of positive inventory in OW at time t 

      )(tI s     level of negative inventory at time t 

     ),( sr ttTC  net present value of cash flows for the first  

                             cycle 

    ),( sr ttNPV  net present value of total cost 

   ),( sr ttACT    average total cost 

3 MATHEMATICAL FORMULATION 
We have considered here the traditional shortage model 

associated with a two-warehouse inventory problem. It 

starts with an instant replenishment and ends with short-

ages as in the figure. The ordering quantity over the re-

plenishment cycle can be determined as follows: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In a rented ware house 

 
)),(()()( taIDtIdttdI rrr +−=+ β  

  ,0 rtt << 0)( =rr tI   …. (1) 
 

)1)()(()( ))(( −+= −+ tta
r

reDtI ββa   …. (2) 
 

In the own warehouse 
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0)()( =+ tIdttdI oo α  

  ,0 rtt <<  WIo =)0(   …. (3) 
 

t
o WetI α−=)(     …. (4) 

 
Again  

 
)),(()()( taIDtIdttdI ooo +−=+a  

  ,or ttt <<  0)( =oo tI   …. (5) 
 

)1)()(()( ))(( −+= −+ tt
o

reaDtI βaβ   …. (6) 
 
 

Both in the rented warehouse and in own warehouse 
 

DdttdI s −=)( , Ttttt soo =+<< ,  

      0)( =os tI  …. (7) 

)()( ttDtI os −−=     …. (8) 
 
The ordering quantity over the replenishment cycle is  
 

)()0()0( TIIIQ sor −+=  
    s

ta
r DtWeaDtI r ++−+= + )1())()(( )( ββ  

      …. (9) 
 
 

The maximum inventory level per cycle is 
 

)0()0( or IIB +=  
       WeaD rta +−+= + )1())(( )( ββ   …. (10) 
 

With an instantaneous cash transaction during sales, the 
present value of purchase cost for the first cycle can be 
obtained as 
 

)]()0()0([ )(
sos

ttr
or ttIeIIC so +++ +−  

 

s
ttrta DteWeaD sor )()( )1())(( +−+ ++−+= ββ  

Holding cost in the rented warehouse 
 

∫
rt

rhr dttIC
0

)(  

= rta
hr reararDC ).())[).(.((( ββa ++++  

  )]().( ββ ++−++ − area rrt  

Holding cost in own warehouse  
 












+ ∫∫

o

r

r t

t
o

t

oho dttIdttIC )()(
0

 

))).((.())(.( so rtrt
hoho eearrDCraWC −− −+++++= aa

 

Backorder cost (shortage cost) 

∫ −
T

t
ss

o

dttIC )(  

)1.().( )(2 −−= +−
s

rtttr
s rteerDC sso  

Replenishment cost  = Ao 

Total cash flow TC (tr, ts) 

( ) ( ) ( )[ ]+++−++= +−+
s

ttrta
o DteWeaDCA sor )1).(( ββ  

( )( ) ( )[ ])()(.).(.. ββββ β ++−+++++ −+ areareararDC rr rtta
hr  

( )( ) ( )( ) )(..). so rtrt
hoho eerarDCraWC −− −++++++ aa

 

( ) ( ) ( )1.. 2 −−+ +−
s

rtttr
s rteerDC sso   …. (11) 

 
Due to the continuity of )(tI o  at rtt =  from (4) and (6) we 
get  

( )( )1)( )).(()( −+= −++− ro ttaat eaDWe aa a  
This implies 

( ) ( )( ){ }1.)(ln)(1 ).( ++++= +− rta
ro eDWaatt aaa  

      …. (12) 

where  is a function of   and  

1)))((1(
1

)( <







++
= +− DWeadtdt

rtaro aa
 

i.e. 01<−ro dtdt  

Let  net present value of total cost over the hori-
zon [0,  
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Then  )(
0

),(),( so ttnr
srnsr ettTCttNPV +−

=∑=  

  ∑
=

+−=
0

)(),(
n

ttnr
sr

soettTC  

  ( )( ))(11),( so ttr
sr ettTC +−−=     …. (13) 

We determine rt and st  such that ),( sr ttNPV  is minimized 
 

( )( )
( )( ) ( )( )( )












∂∂−+

−−
=∂∂

+−

+−+−

rsrro
ttr

sr
ttrttr

rorsr
tttTCdtdte

ttTCeredtdttttNPV
so

soso

),(.1.11

),(.1),(
)(

2)()(  

          ….. (14) 

( )( )
( )( ) ( )( )( )












∂∂−−+

−−
=∂∂

+−+−

+−+−

ssr
ttrttr

sr
ttrttr

ssr
tttTCee

ttTCeretttNPV
soso

soso

),(.11.11

),(.1),(
)()(

2)()(

       
          ….. (15) 

Where, ( )






++
=

∂
∂

+− DWea
D

t
ttTC

rta
r

sr
)()(1

),(
aa

x 

   

[ ]






 −−−+− +−+− )1()( )()(

s
rtttrs

r
rtttr

s
rt rtee

r
CtKeerteC ssoosoo  

        ….. (16) 

    [ ]ss
ttr

s

sr trcCCDe
t

ttTC
so )(

),( )( −+=
∂

∂ +−      ….. (17) 

  [ ])()(

)(
)(

)( roor ttrrttahr
r ee

ar
CarC

tK −−++ −
++
++

= β

β
β  

   






 +
+

+−

D
Wea rta )()(1

aa
+ 

      [ ]+−
++
+++ − 1

)(
)( )( ro ttrho e

ar
CarC

a
a

 

      
D
Weae

ar
CarC r

ro

ta
ttrho

)(
)( )(.

)(
)( aa

a
a +−

− +
×

++
+++

….. (18) 

    and 
r

o

dt
dt

 is defined as 

1
)(1

1
)(

<







 +

+
=

+−

D
Weadt

dt
rta

r

o
aa

      (from 12) 

The optimal solution of ),( sr tt  must satisfy 

0),(
=

∂
∂

r

sr

t
ttNPV

 and 0),(
=

∂
∂

s

sr

t
ttNPV

 simultaneously.  

Then from (14) and (15) 

    
r

sr

r

o

ttr

sr
ttr

t
ttTC

dt
dt

ettTCre
so

so

∂
∂−

=−
+−

+− ),(1),(
)(

)(   ….. (19)  

   [ ]
s

srttr
sr

ttr

t
ttTCettTCre soso

∂
∂

−= +−+− ),(1),( )()(     …… (20) 

 

Since both left hand sides in (19) and (20) are same, their 
right hand sides are equal. Comparing them 
 

)()1( r
rts tKe

r
rCC

s =−
− −    …… (21) 

We substitute ),( sr ttTC  in (11) and 0),(
=

∂
∂

s

sr

t
ttTC

 in  

equations (17) and (20), and obtain 
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.
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])(][1[

0

0

2

00
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s
rtttrS

rtrthh

rtta
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ee
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DC
ra
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ar

ere
arar

DC

We
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β
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β
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      ….. (22) 

LEMMA 1 
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If WaD )( a+> , then K(tr)   is continuous and is strictly 
increasing function of ),0[ ∞∈rt  and its range is   












∞


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



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−
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
++
+++ +

+ ,1))(1(
)(

)( 1
αα

α
α α

r
ho

D
Wα

αr
CαrC  

Proof: 
It is obvious that K(tr) is a continuous function of ),0[ ∞∈rt . 
Next taking the derivative of K(tr) with respect to tr   
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a

 

If WaD )( a+>  then we know that  0)(
>

r

r

dt
tdH

. 

Therefore, H(tr) is a strictly increasing function in the interval 

),0[ ∞  which implies 

0
)(

)0()( >
+

=>
Wa

DHtH r a
 for 0>rt  

From the above result and assumption (13), 

0)(
>

r

r

dt
tdK

for 0>rt , Therefore,   K(tr) is a strictly increas-

ing function in the interval ),0[ ∞ . 






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

−
+

+



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+ 1))(1(
)(

)()0(
1

αα
α
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r
ho

D
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αr
CαrCK  

and ∞=∞→ )(lim rt tK
r

 are trivial. 

From lemma 1, to guarantee that the optimal solution exists, 

we assume that D is larger than the maximum deteriorating 

quantity for the items in OW, WaDeiWa )(..,)( aa +>+ . 

This result is obvious. Thus, from now onwards we assume 

that WaD )( a+>  in this article. 

 

 

 

LEMMA 2 

If 
r

rCCK s −≥)0(  then the nonnegative solution of (tr,ts) 

which satisfies equation (21)  does not exist. 

Proof:  
 

If 
r

rCCK s −≥)0( , then 







 −

−> −

r
rCCetK srt

r
s )1()(  for ),0[ ∞∈st . On the other 

hand, from Lemma 1, we have, K(tr) is strictly increasing func-
tion of ),0[ ∞∈rt . Thus, a value of tr cannot be found in the 

interval ),0[ ∞  such that  





 −

−> −

r
rCC

etK srt
r

s )1()( .  

This completes the proof. 
 
From lemma 2, we see that the optimal solution exists only if 

)0(K
r

rCCs >
−

. When the inequality )0(K
r

rCCs >
−
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holds, equation implies that ts  is a function of ),0[ ∞∈rt . 

Taking the partial derivative of both sides in equation (21) 

with respect to  tr,  it gives 

0)()( >=− −

r

r

r

srt
s dt

tdK
dt
dterCC s         ….. (23) 

Thus, we obtain 0>
r

s

dt
dt

. From lemma 1, K(tr) is a continuous 

and strictly increasing function of ),0[ ∞∈rt , thus we can 

find a unique value  ),0[^ ∞∈rt  such that 

r
rCCtK s

r
−

=)( ^ . 

Moreover, since both tr and ts must be nonnegative, the feasi-

ble solution for tr which satisfies in equation (21) should be 

chosen in the interval [0,tr^). Therefore, we can obtain the 

following result: once we get the optimal value ),0[ ^*
rr tt ∈ , 

the optimal solutions of  to and ts (denoted by to* and ts*, re-

spectively) can be uniquely determined by equations (12) and 

(21) respectively, and given as follows: 
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Now we can derive the optimal value tr*.  Using equation (22), 
we let   
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 when ),0[ ^
rr tt ∈    ….. (25) 

After assembling equation (21) and (23), the first deriva-
tive of ( )rtG  with respect to [ )∧∈ rr tt ,0 ),0[ ^

rr tt ∈ , 
becomes 
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Therefore, G ( )rt  is a strictly increasing function in the in-
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Then we have the following result. 
 

 
LEMMA 3  
 

For any given )0(K
r

rCCs >
−

, we have 

(a) If 0)0( ≤G , then the solution ),0[ ^*
rr tt ∈ , which satis-

fies equation (22) not only exists but is also unique. 
(b) If G(0)>0, then the solution ),0[ ^*

rr tt ∈ , which satisfies 
equation (22) does not exist. 
 
Proof: 
(a) First we consider G(0)<0. Since G(tr) is a strictly increas-

ing function in [0,tr^) and ∞=
→

)(lim ^ rtt tG
rr

,by using initial 

value theorem , there exists a unique solution ),0[ ^*
rr tt ∈  

such that G(tr*)=0 i.e. tr* is the unique solution that satisfies 

equation (22). 

Next if G(0)=0, then from the property that G(tr) is strictly 

increasing  in [0,tr^), then tr*=0 is the unique value which sat-

isfies G(tr*)=0. In this case, the inventory system reduces to 

the own warehouse problem. 

 
(b)  From the property that G(tr) is strictly increasing  in 
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[0,tr ^), if G(0)>0, then G(tr)>0  ),0[,0)( ^
rrr tttG ∈∀> . Thus 

we can find a value ),0[ ^*
rr tt ∈  such that G(tr*)=0. 

 
THEOREM 1  
 

For any given  )0(K
r

rCCs >
−

, we have  

(a) If 0)0( <G , then the  point ),( **
sr tt  which satisfies equa-

tion (21) and (22) simultaneously, and ),0[ ^*
rr tt ∈  is the glob-

al minimum point of the net present value of total cost . 

(b) If 0)0( ≥G , then the optimal 0* =rt in this case, the in-

ventory system reduces to one- warehouse problem. 

 
Proof: 
(a) 0)0( <G  

Since )1(),(),( )( so ttr
srsr ettTCttNPV +−−=   
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where *
ot  is defined as in equation (24). 

From Lemma 3(a), the solution ),0[ ^*
rr tt ∈   which satis-

fies (22) not only exists but is also unique. Hence, the val-
ue of *

st  can be uniquely determined by equation (24). 

Again, 
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stationary point ),( **
sr tt  is  
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Hence, the hessian matrix H at point ),( **
sr tt is positive defi-

nite. We conclude that the stationary point for our optimiza-

tion problem is a global minimum point. 

(b) For 0)0( =G , from the proof of lemma 3(a),   0* =rt is 

the unique solution which satisfies 0)( * =rtG   

For 0)0( >G , by equation (18), (21) and (25), equation (14) 

becomes  
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Because 0>ro dtdt  and )( rtG  is a strictly increasing func-

tion, we have 0),( >∂∂ rsr tttNPV  for any ),0[ ^
rr tt ∈  

which implies that for any fixed ),0[ ∞∈st , a smaller value of 

rt  causes a lower value of ),( sr ttNPV . As a  result, the min-

imum value of ),( sr ttNPV  occurs at the boundary point 

0* =rt  . 

For the special circumstance where 0* =rt , since the RW is 

not used, the model reduces to the one-warehouse inventory 

problem. This completes the proof. 

From theorem 1(a), once the optimal solution ),( **
sr tt  is ob-

tained, we substitute ),( **
sr tt  into equations (9) and (13), the 

optimal ordering quantity per cycle, *Q , and the minimum net 

present value of total cost ),( **
sr ttNPV   are as follows: 
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and  

    ])([),( ***
sssr trCCC

r
DttNPV −+=    ….. (26) 

 From the special case that 0* =rt  in theorem 1(b), the model 

reduces to one-warehouse inventory problem. 

Let hohr CC = , αβ =    and 0=W .   We can obtain the ob-

jective function from equation (11). Then the optimal solution 

of the one- ware house inventory problem can be solved by 

using similar arguments. Next, we want to compare the deci-

sion using the net present value with one using the total aver-

age cost, let ),( sr ttATC be the  average total cost, then we 

have 
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For the minimum value of ),( sr ttATC  we get 
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It is obvious that equation (28) is the same as equation (21). 

Arguing similarly as the previous section, if equation (28) 

holds, then we have )0()( KrrCCs >−    and st  is a func-

tion of rt , where ),0[^ ∞∈rt  and satisfies 

rrCCtK sr )()( ^ −=  once we get the optimal value 

),0[ ^**
rr tt ∈ , the optimal solutions of ot and st  denoted by 

**
ot  and **

st  respectively can be uniquely determined.  Next 

motivated by equation (21) we let 
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Since, 
)()()()( )(]1[1 sosososo ttr

so
ttrttrttr ettreee +−+−++− +>−=−  we 

obtain that )()( rr trZtG >  for all 0>rt  Therefore if there 

exists a value such that 0)( ** =rtZ   must be larger than 

the value *
rt where 0)( * =rtG . Summarizing the above argu-

ments we have the following result. 

 
Proposition 1 
If the solution of ),0[** Λ∈ rr tt , which satisfies  0)( =rtZ , 

exists, then ***
rr tt > . 

From Proposition 1, if **
rt exists then it is easily seen that 

***
oo tt >  and ***

ss tt >  i.e. the length of the inventory cycle 

based on the average cost is longer than one based on NPV. 

 

4 NUMERICAL EXAMPLE 
To illustrate the above results, we consider this example: D = 
400, W = 100,  C= 10, 2.0=hoC ,   5.0=hrC ,    2=sC ,  a = 

0.01, , , r = 0.06 in appropriate units. 

Then, the numerical results for ),( sr ttNPV and  

),( sr ttATC are shown in the table below.  
Table 1.Numerical results for ),( sr ttNPV   and ),( sr ttATC  

A *
rt  *

ot  *
st  Q* ),( **

sr ttNPV  

100 0.1875 0.4359 0.4052 337.4 70447.6 

250 0.1875 0.8063 0.0348 339.2 66991.5 

 **r  **
ot  **

st  Q** ),( ****
sr ttATC  

100           

 

0.7619  

3.3637          

1.0075 

3.5969                       

1.1417 

5.8132                               

867.3  

3890.6                            

3433.4 

5332.5 

250           

 

0.7619  

3.3637                 

1.3746  

3.9446                        

0.7756 

5.5555                              

870.8 

3937.4                              

11463.1 

5136.6 

Table 2.Sensitivity analysis of ),( **
sr ttNPV  

r ∆  ),( **
sr ttNPV

 

c ∆  ),( **
sr ttNPV

 
.02 

 
89.8496               210632.0                                 5   28.1822 36817.6 

  .04                         
 

39.799               105551.0                                10 23.0815           70448.5 

.08 14.697                 52838.2                                15 17.9807          103789.2 
 

.10 
 

9.6456                 42224.6                                20 12.8799          135494.3 

β ∆  ),( **
sr ttNPV

 
hrC

 
∆  ),( **

sr ttNPV
 

0.04             
 

23.081               70447.6                               1.0             23.0563        70504.8                               

0.09                                           
 

23.081               70505.3 2.5             23.0059        70590.7                               

0.24             
 

23.081               70591.2                               5.0             22.9555        70646.2                               

α ∆  ),( **
sr ttNPV

 
sC

 
∆  ),( **

sr ttNPV
 

0.00                           
 

23.117               70382.4                               0.5            -1.92               --   

0.01             
 

23.081               70447.6                               1.0             6.41                69244.9                                

0.04             
 

23.011               70631.8                               2.0             23.08              70447.6                               

 

5 CONCLUDING REMARKS 
 

In this paper, an inventory model is developed for deterio-

rating items with two levels of storage, permitting shortage 

and complete backlogging. In particular, we use the NPV of 

total cost as the objective function for the generalized invento-

ry system. The  general pattern analytical formulations of the 

problem has been given. The condition which guarantees that 

the unique solution exists, is obtained and the complete proof 

of corresponding second-order sufficient conditions for opti-

mum. It will be economical to consume the goods of RW at the 

earliest. However, this does not mean that the firm always 

takes time to search a preserving facility with a lower deterio-

ration rate than that in OW. Hence, the condition, 
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WaD )( a+> is more suitable than the assumption of dete-

rioration rates in RW and OW. In addition, when the discount 

rate r is small, we have, 

)()()()( )(]1[1 sosososo ttr
so

ttrttrttr ettreee +−++−+− +≈−=−  
 
This implies )()( rr trZtG ≈ . Hence, the optimal solution 

based on average total cost will be a good approximation to 

the one based on NPV. 

The proposed model can be extended in several ways. Firstly, 

we can easily extend the backlogging rate of unsatisfied de-

mand to any decreasing function )(xβ where x is the waiting 

time up to the next replenishment, and 1)(0 ≤≤ xβ  

with 1)0( =β  Secondly, we can also incorporate the quantity 

discount and the leaning-curve phenomenon into the model. 
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